Kurse
Da bestimmte Basen in sehr vielen Anwendungsszenarien vorkommen, haben sich hierfür spezielle Bezeichnungen durchgesetzt. Häufig gibt es für diese Logarithmen eigene Tasten am Taschenrechner bzw. eigene Befehle bei Computerprogrammen.
1. Natürlicher Logarithmus
Dieser Logarithmus verwendet als Basis die Eulersche Zahl $e$. Er wird häufig in den Naturwissenschaften verwendet, ist jedoch auch in der Mathematik der Standardlogarithmus. Oftmals wird für den natürliche Logarithmus die Abkürzung ln verwendet. Viele Programme (welche nur diesen Logarithmus anbieten) verwenden jedoch die Abkürzung log. Das ist insofern problematisch, da diese Abkürzung auch für den nachfolgend beschriebenen dekadischen Logarithmus gebräuchlich ist. Außerdem verwendet man die Bezeichnung log auch, um Aussagen zu formulieren, welche unabhängig von der Basis für alle Logarithmen gelten.
2. Dekadischer Logarithmus
Dieser Logarithmus verwendet die Basis 10 und wird daher auch häufig als „Zehnerlogarithmus“ bezeichnet. Am Taschenrechner und bei Computerprogrammen wird dafür meistens die Abkürzung lg bzw. seltener die Abkürzung log verwendet (wobei letztere aus den oben beschriebenen Gründen problematisch ist).
3. Binärer Logarithmus
Der binäre Logarithmus verwendet die Basis 2 und ist u. a. in der Informatik von größerer Bedeutung. Gebräuchliche Abkürzungen sind lb bzw. ld (für dualer Logarithmus).
Aufgabe 1
Berechne die folgenden Logarithmen mit dem Taschenrechner:
- $\ln(65)$
- $\lg(40)$
© 2016 – 2024 MATHE.ZONE