Impressum · Datenschutz
© 2016 – 2022 MATHE.ZONE
© 2016 – 2022  MATHE.ZONE · Impressum · Datenschutz      

Aufgabe


Aufgaben werden bei jedem Laden der Seite neu generiert. Bei den meisten Aufgaben bedeutet dies, dass sich Werte in der Angabe verändern. Möchte man zu einem späteren Zeitpunkt erneut auf die selbe Aufgabe zugreifen, so sollte ein Screenshot angefertigt werden, da beim erneuten Laden der Seite neue Zahlen verwendet werden. Hinter den Eingabefeldern wird jeweils die Anzahl an Nachkommastellen angegeben. Zur Kontrolle der eigenen Rechnungen können die Lösungen eingeblendet werden.

Aufgabe 994: Nachfolgend ist der Graph der Funktion $f(x)=1+2x^2-\frac{1}{2}\,x^4$ abgebildet.

Kreuze jeweils an, ob die Aussage wahr oder falsch ist.
Die Funktion $f$ ist im Intervall $[1; 2]$ streng monoton wachsend.
An der Stelle 1 beträgt der Steigungswinkel des Funktionsgraphen ca. 57,3°.
Für beliebige $x$ gilt $f(-x)=f(x)$.
Die beiden Hochpunkte befinden sich exakt an den Stellen $\pm 1{,}5$.
Der Graph der ersten Ableitungsfunktion besitzt genau zwei Nullstellen.
Der horizontale Abstand der beiden Wendepunkte beträgt ca. 1,63.

Lösung: ausklappen