Aufgabe
Betrachte die folgende Matrizenrechnng und gib anschließend an, ob die Aussagen wahr oder falsch sind.
$$ A\cdot B= \begin{pmatrix} 1 & 3 \\ 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} -2 & 3 \\ 1 & -1 \end{pmatrix}= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $$
Es gilt $A=-B$.
$A$ ist die transponierte Matrix von $B$.
$B$ ist die inverse Matrix von $A$.
Das Produkt $A\cdot B$ ist kommutativ.
$A$ ist die inverse Matrix von $B$.
$B$ ist die transponierte Matrix von $A$.
Lösung: ausklappen
© 2016 – 2024 MATHE.ZONE