Das 3. Keplersche Gesetz beschreibt den Zusammenhang zwischen den Umlaufzeiten $T_1$ und $T_2$ zweier Planeten um die Sonne und den großen Halbachsen $a_1$ und $a_2$ ihrer elliptischen Umlaufbahnen. Dieser Zusammenhang lautet folgendermaßen: $$\left(\frac{T_1}{T_2}\right)^2=\left(\frac{a_1}{a_2}\right)^3$$
a) Erstelle eine Formel zur Berechnung von $a_2$. Das Ergebnis soll keinen Doppelbruch enthalten und möglichst weit vereinfacht sein.
Formel (inkl. Lösungsweg):
b) Die große Halbachse der Erdumlaufbahn beträgt 150 Mio. km. Die große Halbachse der Umlaufbahn des Saturns beträgt 1434 Mio. km. Berechne die Umlaufdauer des Saturns um die Sonne in Jahren. Die Umlaufdauer der Erde beträgt ein Jahr. Achte auf einen möglichst effizienten Lösungsweg!
Umlaufdauer des Saturns (inkl. Lösungsweg):

Durch Ziehen der Ränder kann die Größe des weißen Bereichs angepasst werden.
Vollbildmodus ein- und ausschalten (Firefox, Chrome, Edge): F11
Schriftgröße ändern: