Impressum · Datenschutz
© 2016 – 2020 MATHE.ZONE
© 2016 – 2020  MATHE.ZONE · Impressum · Datenschutz      

Interaktive Aufgaben zum Logarithmus


Interaktive Aufgaben werden bei jedem Laden der Seite neu generiert. Hinter den Eingabefeldern wird jeweils die Anzahl an Nachkommastellen angegeben. Zur Kontrolle der eigenen Rechnungen können die Lösungen ausgeklappt werden. Möchte man zu einem späteren Zeitpunkt erneut auf diese Aufgabe zugreifen, so sollte ein Screenshot angefertigt werden, da beim erneuten Laden der Seite neue Zahlen verwendet werden. Einzelne interaktive Aufgaben können aufgerufen werden, indem im Suchfeld rechts oben @X eingegeben wird, wobei X für die Aufgabennummer steht.

Aufgabe 186: Es soll der Zusammenhang zwischen Einwohnerzahl und Fläche für verschiedene Länder in einem doppeltlogarithmischen Diagramm (jeweils mit Basis 10) dargestellt werden. Auf der horizontalen Achse wird die Fläche in km² und auf der vertikalen Achse die Einwohnerzahl in Mio. aufgetragen. Alle Punkte sollen beschriftet werden und neben dem Diagramm soll eine Tabelle mit allen zugehörigen Werten ersichtlich sein. Verwende als Grundlage für die Daten die Seite Liste der Staaten der Erde und als Diagrammvorlage die folgende Datei: Diagrammvorlage.

Folgende Länder sollen dargestellt werden: Kanada, Iran, Belgien, Finnland, Montenegro
Diagramm:

Lösung: ausklappen

Aufgabe 190: Lies die Koordinaten der vorgegebenen Punkte aus dem folgenden doppeltlogarithmischen Diagramm ab und gib das Ergebnis jeweils im Format X/Y an.

a) Punkt C: [0]
b) Punkt S: [0]

Lösung: ausklappen

Aufgabe 317: Beschreibe, wie man ohne Taschenrechner sofort erkennen kann, dass $\lg(250)$ zwischen 2 und 3 liegt.

0/1000 Zeichen

Lösung: ausklappen

Aufgabe 356: Ein Blatt Papier kann nur ca. sieben Mal in der Mitte gefaltet werden. Je nach Art des Papiers kann es kleine Abweichungen geben.

a) Wie oft müsste man ein 0.15 mm dickes Blatt Papier mindestens falten, damit der entstehende „Turm“ höher als 1 m ist?
Ergebnis: mind. [0] Faltungen
b) Wie dick wäre der „Turm“, wenn das Blatt 41 Mal gefaltet wird?
Ergebnis: [0] km
c) Recherchiere im Internet nach einer vergleichbaren Größe aus der Realität, um sich das Ergebnis von Aufgabe b) besser vorstellen zu können.

0/1000 Zeichen

Lösung: ausklappen

Aufgabe 520: Erstelle durch händische Umformung aus der Formel für den Endwert einer nachschüssigen Jahresrente eine Formel zur Berechnung der Jahre $n$. $$E_{\text{nach}}=R\cdot \frac{q^n-1}{q-1}$$

Ergebnis (inkl. Rechenweg):

Lösung: ausklappen

Aufgabe 804: Unter 725 Proben einer bestimmten Flüssigkeit befindet sich genau eine vergiftete Probe. Da die nötige chemische Analyse sehr teuer ist, werden die Proben zunächst in zwei Hälften geteilt. Von allen Proben einer Hälfte wird jeweils ein Tropfen entnommen und gemischt. Ist der Test dieser neuen Probe positiv, so weiß man, dass die vergiftete Probe in dieser Hälfte war. Andernfalls war sie in der nicht untersuchten Hälfte. Auf diese Weise lässt sich die Anzahl der in Frage kommenden Proben schrittweise halbieren. Wie viele Tests benötigt man höchstens, um die vergiftete Probe zu finden?

Maximalanzahl: [0] Tests

Lösung: ausklappen

Aufgabe 971: Gib an, ob die folgenden Umformungen richtig oder falsch sind.

$\log(a\cdot b^2)=\log(a)+\log(b)+\log(b)$
$\log(a^2\cdot b)=2\cdot \log(a)\cdot \log(b)$
$\log(a+b^2)=\log(a)\cdot \log(b^2)$
$\log\left(\frac{a}{b^2}\right)=\log(a)-2\cdot \log(b)$
$\log\left(\frac{a^2}{b}\right)=2\cdot \log\left(\frac{a}{b}\right)$

Lösung: ausklappen