Impressum · Datenschutz
© 2016 – 2020 MATHE.ZONE
© 2016 – 2020  MATHE.ZONE · Impressum · Datenschutz      

Aufgaben zum Elektromagnetismus


Auf dieser Seite findet man Aufgaben zum Elektromagnetismus. Jede Aufgabe besitzt eine Nummer, über welche sie durch die Suchfunktion jederzeit wieder aufgerufen werden kann. Dazu muss als Suchbegriff die Aufgabennummer mit einer Raute davor eingegeben werden, also z. B. #123.

Die Aufgaben werden bei jedem Laden der Seite neu generiert. Bei den meisten Aufgaben bedeutet dies, dass sich Werte in der Angabe verändern. Möchte man zu einem späteren Zeitpunkt erneut auf die selbe Aufgabe zugreifen, so sollte ein Screenshot angefertigt werden.

Hinter den Eingabefeldern wird jeweils die Anzahl an Nachkommastellen angegeben. Zur Kontrolle der eigenen Rechnungen können bei vielen Aufgaben die Lösungen eingeblendet werden. Sollte Ihnen bei einer Aufgabe ein Fehler auffallen, so melden Sie diesen bitte.

#637 | keine Lösung vorhanden · Einzelansicht · Projektoransicht · Fehler melden
Das in Europa, Australien und großen Teilen Asiens verwendete Stromnetz hat eine Frequenz von 50 Hz und eine Scheitelspannung von 325 V. Der zeitliche Spannungsverlauf kann somit durch die Funktion $U(t)=325\cdot \sin(2\pi t\cdot 50)$ beschrieben werden. Die Effektivspannung $\hat U$ ist jene Gleichspannung, die am selben Widerstand pro Periode die gleiche elektrische Energie liefert, wie die betrachtete Wechselspannung. Diese Energie ist proportional zur elektrischen Leistung und somit wiederum proportional zu $U^2$. Berechne die Effektivspannung der gegebenen Wechselspannung.
Effektivspannung: $\hat U=$ [2] V

Bei der sogenannten Dreieck-Stern-Transformation wird eine dreieckförmige Anordnung von Widerständen in eine gleichwertige sternförmige Anordnung umgewandelt.

Dafür gelten die folgenden Zusammenhänge: $$r_1+r_2=\frac{R_3\cdot (R_1+R_2)}{R_1+R_2+R_3}\hspace{1cm}r_2+r_3=\frac{R_1\cdot (R_2+R_3)}{R_1+R_2+R_3}\hspace{1cm}r_1+r_3=\frac{R_2\cdot (R_1+R_3)}{R_1+R_2+R_3}$$ Berechne die Widerstände $r_1,r_2,r_3$ der sternförmigen Schaltung, wenn die Widerstände der Dreiecksschaltung folgende sind: $R_1=20\,\Omega$, $R_2=36\,\Omega$, $R_3=51\,\Omega$.
$r_1=$ [2] $\Omega$
$r_2=$ [2] $\Omega$
$r_3=$ [2] $\Omega$

Gegeben ist die unten abgebildete elektrische Schaltung, wobei $U=31.9\,\mathrm{V}$, $R_1=2.4\,\Omega$, $R_2=3.8\,\Omega$ und $R_3=6.4\,\Omega$ bekannt sind.

Anhand der Kirchhoffschen Regeln (Knotenregel und Maschenregel) sowie des Ohmschen Gesetzes können folgende Zusammenhänge festgestellt werden: $$I_1=I_2+I_3\hspace{15mm} I_1R_1+I_3R_3=U \hspace{15mm} I_2R_2=I_3R_3$$ Bereche die Ströme $I_1,I_2$ und $I_3$, welche durch die jeweiligen Widerstände fließen.
$I_1=$ [2] A
$I_2=$ [2] A
$I_3=$ [2] A